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ABSTRACT: Quasicrystalline (QC) phases have been
observed in various condensed matter systems including
self-assembling block copolymer (BCP) melts. Theoretical
study of the thermodynamic stability of QC phases presents a
long-standing unsolved problem because of the aperiodic
nature of the structures. Here, we report a combination
method to study the thermodynamic stability of two-
dimensional dodecagonal quasicrystalline (DDQC) phase
with both ideal tiling and random tiling patterns formed by
ABCB tetrablock terpolymers. This method applies the self-
consistent field theory coupled with the Stampfli self-similarity
construction to accurately calculate the free energy of the
periodic DDQC approximants and then uses a cluster model to predict the stability of aperiodic DDQC phase. Surprisingly, we
find a stable DDQC approximant but metastable ideal tiling DDQC structures. Moreover, the random tiling DDQC structures
as a mesoscopic coexistence of two neighboring periodic substructures of DDQC might become stable.

■ INTRODUCTION

Quasicrystals (QCs) are an interesting class of aperiodically
ordered materials.1,2 Since their discovery by Shechtman et al.
in Al−Mn alloys in 1980s,1 QCs have led to a redefinition of
crystalline structures. Moreover, QC materials could have
some interesting applications.3 Therefore, QC has attracted
tremendous attention from a wide range of fields.4−6 Although
QCs were initially observed in hard condensed matter systems,
it has been shown that QCs could occur in a wide range of soft
materials as well.7−19 In particular, QC morphologies have
been reported in self-assembling block copolymers
(BCPs).20−29 Despite numerous previous studies, a compre-
hensive and quantitative examination of the thermodynamic
stability of QCs in BCPs has been lacking due to the difficulty
originating from the aperiodicity of the structures.
BCPs are macromolecules composed of covalently linked

and chemically distinct subchains or blocks. It has been well
established that BCPs exhibit unique self-assembly behav-
iors,30−42 thus providing opportunities for the formation of QC
phases. Actually, in 1980, Leibler briefly considered the
possibility of 5-fold symmetry in BCPs but dismissed it as
not feasible.43 Experimentally, Hayashida et al. observed an
aperiodic morphology in blends of ISP-star terpolymers, where
I, S, and P denote polyisoprene, polystyrene, and poly(2-
vinylpyridine) blocks, respectively. This morphology was
designated as a dodecagonal quasicrystal (DDQC).21 Structur-
ally, the DDQC morphology could be regarded as a specific

tiling pattern composed of triangles and squares. A
quasicrystalline tiling pattern can vary from an energetically
stabilized ideal tiling pattern to an entropically stabilized
random tiling pattern.44 The ideal tiling DDQC structure tiled
by triangles and squares subjects to a specific self-similarity
rule, namely, the Stampfli inflation rule,45−47 while in
entropically stabilized QCs the entropy mainly stems from
the dynamic rearrangement of subunits at high temper-
atures.46,47 Thus, the periodicity is destroyed due to the
maximization of the arrangement entropy of square and
triangular subunits. In other words, there are many nearly
degenerate arrangements leading to a more stable quasicrystal-
line state than the crystalline state.4 For the DDQC structures,
the ratio η = NT/NS of the numbers of triangles (NT) and
squares (NS) as an important characteristic parameter is an
irrational number of η = ≈4/ 3 2.309. In the experiment by
Hayashida et al.,21 η ≈ 2.305, very close to 4/ 3 , was
regarded as important evidence for the observation of the
random DDQC pattern. In addition, the DDQC morphologies
were also observed in a series of experiments by Bates and co-
workers but were believed to be most likely metastable in their
systems.25−29
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The experimental observation of DDQC morphologies in
various BCP systems presents a challenge to polymer theory. It
is therefore desirable to extend the well-established theoretical
framework of self-consistent field theory (SCFT)48−50 to the
study of QC order in inhomogeneous polymeric systems. In
this work, we focus on the SCFT study of the stability of
DDQC morphologies in BCP melts. In order to make progress
on this topic, two critical problems, i.e., choosing a polymeric
system and accurately determining the free energy of DDQC
morphologies, need to be solved.
In order to choose a proper BCP system for the study we

consider the fact that there are an infinite number of two-
dimensional periodic tilings with triangles and squares. Among
these tilings, two typical periodic tilings with η = 2 and ∞ are
of particular interest (Figure 1). In particular, an ideal DDQC
morphology consists of these two phases as substructures.
Therefore, it is desirable to choose a BCP system that could
form the two periodic phases. In order to examine the stability
of different phases, the free energy of these phases needs to be
determined accurately. It is noted that the accurate spectral
method formulated in a higher dimensional space could be
used to describe QC structures;51 however, extending the
spectral method of QCs to the SCFT has not been successful.
Therefore, it is desirable to develop an efficient scheme of
SCFT for the calculation of free energy of aperiodic DDQC
structures.
The above argument motivates us to re-examine some of the

previous work by Li’s group on the self-assembly of purposely
designed multiblock copolymers.52 In particular, a sequence of
cylindrical phases (denoted by Cm,n with m and n indicating the
coordination numbers (CNs) of A and C cylinders,
respectively), C4,2 → C5,2 → C6,2 → C6,3, is predicted to
form from the asymmetric AB1CB2 tetrablock terpolymers. It is
important to note that the C5,2 (η = 2) and C6,2 (η = ∞)
phases are exactly the constituent substructures of the ideal
DDQC. Therefore, this terpolymer sample provides a proper
candidate system for the study of DDQC. What is particularly

useful is the fact that the CNs could be regulated by the
copolymer compositions, thus providing an effective mecha-
nism to consistently adjust the triangle/square ratio η of the
different stable phases because η is closely related to the CNs
(Table S1, Supporting Information including Tables S1−S7
and Figures S1−S4).
In this study, we aim to develop a combination method

based on the self-consistent field theory for the study on the
thermodynamic stability of dodecagonal structures. In order to
make the computational cost as low as reasonable, we focus on
the two-dimensional cylindrical DDQC structures with both
ideal and random tiling patterns formed by judiciously tailored
ABCB tetrablock terpolymer melts. First, we adopt the
Stampfli inflation rule to generate a series of periodic DDQC
approximants with the range of η value covering that of the
ideal DDQC phase. Then, we use the SCFT to calculate the
free energy of these DDQC approximants as well as other
candidate phases and thus to determine their stabilities. Finally,
we develop a semianalytical cluster model to analyze the
relative stabilities between these DDQC approximants so that
we could predict the stability of aperiodic DDQC structures.

■ THEORY AND METHODS
We consider an incompressible melt of n linear AB1CB2 tetrablock
terpolymer chains with the total number of segments N in a volume of
V. The length of each block is specified by fAN, f B1

N, f CN, and f B2
N,

with f B1
+ f B2

= f B and fA + f B + f C = 1. The interaction parameters are

fixed as χABN = χBCN = χACN = χN = 80 except where otherwise
specifically indicated, where χij is the Flory−Huggins parameter
characterizing the immiscibility between monomers i and j. Generally,
we assume that all polymers have equal Kuhn length b and segment
density ρ0. Within the standard SCFT based on the Gaussian-chain
model,49,53 the free energy per chain in the unit of thermal energy kBT
for a given temperature T, where kB is the Boltzmann constant, can be
expressed as

Figure 1. Illustration of the formation of dodecagonal quasicrystalline (DDQC) morphologies in the parameter space intermediate between two
constituent periodic phases, C5,2 and C6,2, in AB1CB2 tetrablock terpolymer melts. Domains aggregated by the A and C blocks are plotted in red and
blue, respectively, while the matrix of B blocks is plotted in green. White lines connecting neighboring A domains construct the DDQC lattice,
which is composed of dodecagonal clusters with two possible orientations indicated by blue and orange shadowing circles, respectively. Isolated
cluster is shown at the top right corner, a three-dimensional morphology with transparent B matrix is shown at the middle right, and the Fourier
transform pattern of A domains in DDQC is shown at the bottom right corner.
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where ϕi(r) is the volume fraction function of monomer i and wi(r)
denotes its conjugate mean field (i = A, B, C). The spatial function
ξ(r) is a Lagrange multiplier used to enforce the incompressibility
conditions, ϕA(r) + ϕB(r) + ϕC(r) = 1. The quantity Q is the partition
function of the single terpolymer chain interacting with the mean
fields of wi(r) (i = A, B, C), which is determined by

∫= †Q
V

q s q sr r r
1

d ( , ) ( , )
(2)

Here q(r,s) and q†(r,s) are the propagator functions of segments
starting from the two ends, respectively, satisfying the following
modified diffusion equations
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where w(r,s) = wi(r) when s belongs to the i component blocks along
the polymer chain. The above expressions imply that Rg = (N/6)1/2b
is chosen as the unit of spatial length. The initial conditions of the
propagator functions are q(r,0) = q†(r,1) = 1. Minimization of the free
energy with respect to the volume fraction functions and the mean
fields leads to the following SCFT equations
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(6)

The modified diffusion equations are solved using the pseudospectral
method54 with periodic boundary conditions imposed on all
directions, and Anderson mixing iteration55 is implemented to
accelerate the converging speed toward SCFT solutions. The chain
contour is divided into 200 points, i.e., Δs = 5 × 10−3. The terpolymer
melts are placed in a two-dimensional rectangular box with sizes Lx ×
Ly, which is divided into a grid lattice of Nx × Ny. To ensure a reliable
accuracy, the grid size is chosen such that the grid spacing Δx = Lx/Nx
or Δy = Ly/Ny smaller than 0.1Rg. Note that the free energy of each
candidate ordered phase is minimized with respect to the box sizes Lx
and Ly during our SCFT calculations.

■ RESULTS AND DISCUSSION
Stampfli Inflation Rule. To circumvent the computational

difficulty due to the aperiodicity of DDQC, we adopt the
Stampfli inflation rule45−47 to generate a sequence of periodic

DDQC approximants, of which the ith generation is designated
by QC-Gi. Although the DDQC approximants of any
generation are periodic, the boundary effects decrease rapidly
as the number of generation is increased.47 The number of
triangles and squares of QC-Gi is determined by a recursion
relation46,47
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with initial condition [NT
0 , NS

0] = [0, 1], where NT
i and NS

i

indicate the number of triangles and squares contained in the
unit cell of QC-Gi, respectively. For instance, η

(1) = NT
(1)/NS

(1) =
16/7 ≈ 2.2857 for QC-G1. η

(2) = NT
(2)/NS

(2) = 224/97 ≈ 2.3093
for QC-G2, which is surprisingly already very close to the ideal
value of 2.3094.
For QC-G2, the cell size L is as large as 63Rg, around 1 μm

for a moderate molecular weight of polymer. Additionally, the
Fourier transform pattern of QC-G2 exhibits the main peaks of
ideal DDQC (Figure 1). In our SCFT calculations, the grid
lattice for QC-G2 is set as Nx × Ny = 768 × 768, of which the
calculation labor is affordable for nowadays computer.
However, for QC-G3, Lx = Ly becomes +(2 3 ) times larger,
thus requiring the grid lattice as large as Ny × Ny = 3072 ×
3072. Therefore, the computational cost for QC-G3 becomes
extremely high.

Phase Diagrams. As mentioned above, our previous work
has predicted the phase sequence of C4,2 → C5,2 → C6,2 → C6,3

in the AB1CB2 melts with 0.12 < fA = f C < 0.14 but with a
negligibly tiny region of C6,2.52 It has been established that the
phase transitions between those mesocrystals in the linear
terpolymers are governed by two principles.52 The first
principle is that the average CN (CN̅) decreases as the
bridging middle B1 block shortens. The second principle is that
the asymmetry of the molecular architectures dictates the
asymmetry of CNs. The presence of C6,2 (CN̅ = 3) between
C5,2 (CN̅ = 20/7) and C6,3 (CN̅ = 4) follows the first principle
but violates the second one because the CN asymmetry of C6,2

is larger than those of the two others, thus resulting in the
narrow region of C6,2. Therefore, the stability region of C6,2

could be widened by simply enlarging the molecular
asymmetry, e.g., changing the symmetric composition fA = f C
to be asymmetric fA > f C.

52

We examine the stability of the DDQC structures by two
steps. First, we construct the phase diagrams by considering a
series of representative periodic phases composed of triangles
and squares.56 It is well known that the completeness of a
phase diagram relies critically on the library of candidate
phases. However, it is impossible to exhaust all triangle/square
tilings. Therefore, in the second step, we attempt to probe into
the mechanisms governing the relative stabilities of these
candidate phases and then to predict the possibilities for other
phases to become stable, particularly focusing on the periodic
DDQC approximants and aperiodic DDQC morphologies.
Besides the phases of C4,2, C5,2, C6,2, C6,3, H phase, QC-G1 and
QC-G2, four more morphologies are considered, which are
denoted as QC-APXi (i = 1, 2, 3, 4) with η (= 2.2857, 2.3333,
2.4, 2.6667), intermediate between η = 2 of C5,2 and η = ∞ of
C6,2 (Table S1). Apparently, this range of η of QC-APXi covers
η ≈ 2.3094 of the ideal DDQC.
The phase diagram in the f B1

−f C plane for a fixed fA = 0.14 is
shown in Figure 2a. As expected, the C6,2 exhibits a
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considerable stable region between C5,2 and C6,3 when fA > f C.
Detailed free energy comparison between the different
candidate phases is given in Figure S1. A surprising result is
that the QC-APX4 structure exhibits a noticeable stability
window intermediate between C5,2 and C6,2, but QC-G2 is
metastable. In addition, similar results are observed with the
phase diagram in the f B1

−fA plane for f C = 0.12 (Figure 2b). It
is also interesting to note that the phase region of QC-APX4

can be expanded by increasing χN (Figure 2c).
An important result from the study is that a general

transition sequence is predicted from the phase diagrams, e.g.,
C5,2 → QC-APX4 → C6,2, which obviously follows the
regulation principle of the adjustable bridge B1 block (Figure
3).52 However, the absence of the phases with the value of η
intermediate between η = 2 of C5,2 and η = 2.6667 of QC-
APX4 could not be rationalized by this principle, such as QC-
APX1/QC-G1 with η = 2.2857, QC-G2 with η = 2.3093, QC-
APX2 with η = 2.3333 and QC-APX3 with η = 2.4. Therefore,
more sophisticated interpretations are needed for their relative
stabilities. Interestingly, these phases share a common
structural feature as DDQC, i.e., that they are mainly
composed of identical dodecagonal clusters, each of which is
comprised of 12 triangles and 6 squares (Tables S2 and S3).
Accordingly, they can be classified as DDQC approximants
that exhibit similar scattering profiles as that of the aperiodic
DDQC structure (Table S1). For convenience, these DDQC
approximants are referred to as dodecagonal cluster phases
(DDCPs).

It is important to note that the free energy differences
between these DDCPs change very mildly in the region of
0.285 ≤ f B1

≤ 0.3 (Figure S1e). This observation implies that
the relative stabilities between these phases are dictated by
some intrinsic and delicate factor, which may originate from
their geometrical tilings. Therefore, we could examine the
relative stabilities of these DDCPs as well as other possible
DDCPs including ideal and random tiling DDQC patterns by
focusing on a specific phase point within the region of QC-
APX4, e.g., the C

5,2/C6,2 transition point for fA = 0.14 and f C =
0.13 in Figure 2a. The free energies relative to that of QC-
APX4 are presented in Figure 2d. In addition, the free energies

Figure 2. Phase diagrams for AB1CB2 terpolymers (a) in the f B1
−f C plane with fA = 0.14 and χN = 80, (b) in the f B1

−fA plane with f C = 0.12 and χN

= 80, and (c) in the f B1
−χN plane with fA = 0.14 and f C = 0.13. Symbols indicate the transition points determined by SCFT, while solid lines are a

guide for the eyes. (d) Free energy difference Δf = f − f QC‑APX4 for DDCPs with fA = 0.14 and f C = 0.13 at the C5,2/C6,2 phase boundaries for χN =
80, 100, and 120.

Figure 3. Density plots of the general sequence of stable phases
observed in the considered ABCB terpolymer systems, i.e., C5,2 →
QC-APX4 → C6,2 with corresponding η value.
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for χN = 100 and 120 are calculated, indicating that the relative
stabilities of these DDCPs are insensitive to the value of χN. It
is necessary to note that the segregation with the values of 80
≤ χN ≤ 120 is intermediate for the tetrablock copolymers.
According to the dependence of the phase boundaries on the
value of χN in Figure 2c, the conclusion about the relative
stabilities between these DDCPs should also hold for the
strong segregation region (low temperature). This observation
further confirms that their relative stabilities should stem from
the different arrangements of triangles and squares.
Cluster Model. It has been established that the stability or

metastability of QC in hard materials originates from
electronic structures.4 In contrast, the formation of ordered
phases in BCPs is dictated by the competition between the
interfacial energy and the chain stretching entropy, usually
leading to the packing frustration of polymer chains.57,58 Here
we will elucidate the critical role of packing frustration closely
related to the lattice mismatch on the metastability of DDQC
based on the following observations (Figure 4). For the tiling
patterns composed of squares and triangles, there are only
three possible types of linkages, namely, triangle−triangle
(TT), triangle−square (TS), and square−square (SS) (Figure
4). For the TS linkage, the tail B2 blocks are more stretched in
the square than in the triangle, causing the packing frustration
(Figure 4). This is because the ratio of distances from the C
domain on the linkage to the center of the square is larger than
that of the triangle, leading to highly different stretching
degrees of B2 blocks in the two subunits (i.e., packing
frustration). To release this frustration, the C domains are
pushed away from the linkage toward the center of the square.
On the other hand, it is important to note that the lattice
constant a, the equilibrium distance between neighboring A
domains, in the phase of lower CN̅ is smaller for the same
parameters,52 e.g., a(C4,2) < a(C5,2) < a(C6,2) (Figure S2).
Similarly, the lattice constants of the DDCPs are intermediate
between those of the two constituent phases of C5,2 and C6,2

but very close to that of C5,2 mainly consisting of TS pairs.
Therefore, the TS linkage in DDCPs is a favorable
configuration. In contrast, both the TT and the SS linkages
are energetically unfavorable because they are compressed and

expanded relative to their native lattice constants in C6,2 and
C4,2, thus leading to extra compression and stretching to the
tail blocks, respectively (Figure 4). However, as the TT linkage
comprises the hexagonal lattice with the minimal packing
frustration, its energy cost is less than that of the SS linkage. In
a word, the TS linkage is most beneficial to the stability of
DDCPs while the SS linkage is the worst.
To quantitatively determine the energy penalty from the TT

and SS linkages, a cluster model is developed based on ideas
from the hard QCs.4,59 DDCPs are composed of identical
dodecagonal clusters in contact or overlapped, and their
interstitial space if existing is filled by some triangles or squares
(Table S2). In other words, each cluster interacts with others
or with the environment via various “edge linkages” (Figure 4),
each of which is formed by its peripheral triangle/square with
another triangle/square in the neighboring cluster or in the
interstitial space. As discussed above, there are three possible
types of linkages (i.e., TT, TS and SS), which exhibit different
packing frustrations (Figure 4), thus having distinct energy
costs. As a result, the small free energy difference between
different DDCPs mainly originates from the different edge
linkages on their clusters. On the basis of the above argument,
a simple derivation is given as follows.
The contribution of every isolated cluster to the free energy

is rarely influenced by the environment and thus is nearly
constant, f 0, particularly for the DDCPs composed of
nonoverlapped clusters. On average, the free energy of one
DDCP is dictated by the average number of α linkages per
cluster, n̅α. Within such single-cluster approximation, the
volume density of free energy of one DDCP can be written as

∑ ∑ρ
α= + ̅ ̅ = =

α
α α

α
α

−

f f
N

k TV
K n n, 12, TT, TS, SS0

0
1

B cluster

i

k
jjjjjj

y

{
zzzzzz
(8)

where Vcluster indicates the cluster volume and Kα quantifies the
energy cost of one α linkage. Obviously, eq 8 ignores higher
order correlations between the clusters. Then we can rewrite
eq 8 into f = f ′0 + fexc, where the trivial term f ′0 = f 0 +

Figure 4. Illustration of different packing frustrations of the tail B2 blocks in edge linkages with TS, TT, and SS types for one dodecagonal cluster.
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12KTTNρ0
−1/kBTVcluster contains f 0 and the reference energy

from the 12 TT linkages and the excess term

κ κ= ̅ + ̅ ≤ ̅ + ̅ ≤f n n n n, (6 12)exc
TS TS SS SS TS SS (9)

with κTS = (KTS − KTT)Nρ0
−1/kBTVcluster and κSS = (KSS − KTT)

Nρ0
−1/kBTVcluster denoting the energy contributions by one TS

linkage and one SS linkage relative to the TT linkage and n̅TS
and n̅SS denote the average number of TS and SS linkages per
cluster, respectively. Thus, we have κTS < 0 and κSS > 0 based
on the qualitative analysis above.
Because of phason flip, various η-degenerate morphologies

for DDCPs with different n̅TS and n̅SS could be generated, thus
enabling one to estimate the coefficients of κTS and κSS.
Specifically, κTS is estimated as κTS ≈ −2.9 × 10−4 by linearly
fitting the free energy differences between four η-degenerate
morphologies of QC-APX2 with different values of n̅TS but n̅SS
= 0 (Table S3, Figure S3). Then κSS is estimated as κSS ≈ 1.0−
1.4 × 10−3 ≫ |κTS| from a few groups of η-degenerate
morphologies using κTS ≈ −2.9 × 10−4 and eq 9 (Table S4),
which indicates the predominant role of SS pair on the relative
stabilities of DDCPs.
Stability of Ideal Tiling DDQC. The cluster model can be

used to compute the free energy differences between η-
degenerate morphologies with a reliable accuracy by simply
counting their differences in the average numbers of TS and SS
linkages per cluster. Accordingly, we employ the cluster model
to predict the lower limit of the free energy of QC-G2 with the
“optimal” arrangement of clusters, i.e., without any SS linkage.
We generated 12 η-degenerate morphologies of QC-G2 with
different n̅TS or n̅SS (Table S5) and then calculate their free
energies using SCFT. We plot the reduced free energy, f ′ = f −
κTSn̅TS, as a function of n̅SS or the total number NSS of SS
linkages in the unit cell (Figure 5). As predicted by the cluster
model, the data points follow a linear relationship leading to
κSS ≈ 1.02 × 10−3. Moreover, those data points with the same
value of n̅SS overlap very well. A linear extrapolation gives rise
to the lower limit of the trivial term of free energy f ′* ≈
13.18676 of QC-G2 without SS linkages, which is nearly equal

to f ′ = 13.18675 for the QC-APX4. After including the
contribution of the maximal number of TS linkages, the
absolute value of free energy f* ≈ 13.18328 is still not lower
than that of QC-APX4, i.e., f = 13.18327. Though the ideal
DDQC phase can be iteratively approached by increasing the
generation number i of QC-Gi in the Stampfli construction
rule, to the best of our knowledge it is impossible to replace all
of the SS and TT linkages with TS ones. Therefore, the
limiting free energy obtained by extrapolation for QC-G2 with
n̅SS = 0 should be the lower limit of the free energy of ideal
tiling DDQC phase.
The above discussions lead to an important conclusion that

the ideal DDQC should be metastable in this terpolymer melt.
Although the cluster model becomes less rigorous for the
DDCPs with different values of η (e.g., QC-G1, QC-G2, QC-
APX1, and QC-APX2) or with overlapped clusters (e.g., QC-
APX3 and QC-APX4), it could provide a qualitative under-
standing on their relative stabilities by ranking n̅SS and then
n̅TS, i.e., their free energies in the descending order of QC-G1
with (n̅SS, n̅TS) = (2.0, 4.0), QC-G2 with (0.533, 6.933), QC-
APX2 with (0, 6.0), QC-APX1 with (0, 8.0), QC-APX3 with (0,
10.0), and QC-APX4 with (0, 12.0) (Table S2).

Stability of Random Tiling DDQC. In many soft matter
systems the dodecagonal symmetry originates from tiling
entropy.4,6,24,47 However, in the self-assembly of block
copolymer melts, the rearrangement entropy of the triangu-
lar/square subunits is overwhelmed by the configurational
entropy of the polymer chains at a much smaller length scale
(e.g., from Kuhn length to the radius of gyration). Thus, we
only need to examine the energetic stabilities of random tiling
DDQC morphologies.
We constructed 8 different random tiling morphologies via

the zipper and connectivity update moves over different QC-
G2 patterns (Figure 6 and Table S6)

47 and calculated their free

energies. We find that these random tiling morphologies are
rather less stable than the QC-G2 morphology with NSS = 4
(Figure 7). Obviously, the cluster model is not suitable for the
random tiling morphologies because they are not mainly
composed of the dodecagonal clusters. However, fortunately,
the number of SS pairs is still a good quantity accounting for
their relative stabilities because the SS linkage causes the most
energy penalty (Figure 7).
There seems be no possibility for random tiling

morphologies to be more stable than QC-APX4 because of
the large number of SS pairs.47,56 However, there exists

Figure 5. Reduced free energy f ′ of different QC-G2 morphologies
relative to that of QC-G2 with NSS = 4 as a function of n̅SS or NSS for
χN = 80, f B1

= 0.292, fA = 0.14, and f C = 0.13. Data around each
symbol indicates its corresponding value of n̅TS. Linear extrapolation
leads to the lower limit of free energy for NSS = 0, f ′* ≈ 13.18676.

Figure 6. One random tiling morphology with NSS = 18 from the
second-generation DDQC approximant QC-G2 and others are shown
in Table S6. (Left) Density plot with the Fourier transform pattern
shown in the top-right corner. (Right) Corresponding tiling pattern of
the triangles (yellow) and squares (pink).
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another kind of random tiling pattern without energy-
expensive SS pairs, which can be constructed by epitaxially
piecing together the substructures of C5,2 and QC-APX4. This
kind of morphology can be regarded as the mesoscopic
coexistence of the C5,2 and QC-APX4 phases. This is
reminiscent of the random DDQC patterns observed in the
blend of ABC miktoarm star copolymers by experiment.21

Here we try to make a heuristic exploration for this kind of
pattern by constructing several C5,2/QC-APX4 coexistence
morphologies with η values covering that of DDQC (Table
S7). Their free energies calculated on the C5,2/QC-APX4
transition point are slightly higher than that of QC-APX4
with the free-energy difference per chain from 1.8 × 10−4kBT
to 2.9 × 10−4kBT (Figure S4). Hence, it is reasonable to
speculate that the stable random tiling pattern of C5,2/QC-
APX4 coexistence could be observed in judiciously designed
blends of different block copolymers.

■ CONCLUSIONS
In this work, the formation of two-dimensional cylindrical
DDQC approximants in ABCB terpolymer melts is studied by
SCFT. Both the ideal and the random tiling DDQC
morphologies are predicted to be metastable, whereas a
DDQC approximant of QC-APX4 is stable. For the ideal tiling
DDQC, a cluster model is developed revealing quantitatively
that the relative stabilities of the DDQC morphologies and
approximants are mainly dictated by the packing frustration of
polymer chains presented in the compressed triangle−triangle
and expanded square−square pairs. For the random tiling
DDQC it is suggested that the coexistence pattern of C5,2/QC-
APX4 could be stable in block copolymer blends. Three
important conclusions could be drawn from the current study.
First, the observation of the stable QC-APX4 is significant for
experiments because this structure is hard to be distinguished
from the ideal DDQC morphology. Second, the revealed
mechanism not only deepens the understanding of the
formation of DDQC morphologies but also provides designing

rules for new systems to form stable DDQC morphologies.
Third, there is a considerable possibility to experimentally
observe a metastable two-dimensional DDQC morphology
considering that the free energy of DDQC is only slightly
higher than that of the stable phase.
Whether our conclusion applies to the case of three-

dimensional spherical structures25−29 is obviously another
important question. In the three-dimensional system, there is
the third dimension to release the packing frustration within
the most energetically expensive SS pair, thus reducing its
energy penalty. As a result, there might be a high possibility to
observe three-dimensional spherical DDQC structures. Never-
theless, this work provides a useful guide for experiments to
distinguish the DDQC morphologies from the DDQC
approximants or their mesoscopic coexistence morphologies.
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